25

What is the distribution of the square of a normally distributed random variable $X^2$ with $X\sim N(0,\sigma^2/4)$?
I know $\chi^2(1)=Z^2$ is a valid argument for when squaring a standard normal distribution, but what about the case of non-unit variance?

Richard Hardy
  • 54,375
  • 10
  • 95
  • 219
CodeTrek
  • 539
  • 1
  • 6
  • 12

1 Answers1

33

To close this one:

$$ X\sim N(0,\sigma^2/4) \Rightarrow \frac {X^2}{\sigma^2/4}\sim \mathcal \chi^2_1 \Rightarrow X^2 = \frac {\sigma^2}{4}\mathcal \chi^2_1 = Q\sim \text{Gamma}(1/2, \sigma^2/2)$$

with

$$E(Q) = \frac {\sigma^2}{4},\;\; \text{Var}(Q) = \frac {\sigma^4}{8}$$

Alecos Papadopoulos
  • 52,923
  • 5
  • 131
  • 241