You can use fixed effects meta-analysis to do this. Here's an example, in R.
library(metafor)
#set up means
df <- as.data.frame(rnorm(1000))
names(df) <- "y"
#create 10 groups and calculate mean and se for each
df$group <- sample(1:10, 1000, replace=TRUE)
summaryStats <- data.frame(1:10)
summaryStats$m <- NA
summaryStats$se <- NA
summaryStats$m <- tapply(df$y, df$group, mean)
summaryStats$se <- tapply(df$y, df$group, function(x) sd(x)/sqrt(length(x)))
summaryStats$v <- summaryStats$se^2
summaryStats <- as.data.frame(summaryStats)
#Run meta-analysis to get combined mean and se for 10 groups
rma(yi=summaryStats$m, vi=summaryStats$v, method="FE")
#Run t-test to get mean and SE for original sample
t.test(df$y)
Here's the meta-analysis output:
> rma(yi=summaryStats$m, vi=summaryStats$v, method="FE")
Fixed-Effects Model (k = 10)
Test for Heterogeneity:
Q(df = 9) = 4.3262, p-val = 0.8887
Model Results:
estimate se zval pval ci.lb ci.ub
-0.0034 0.0316 -0.1078 0.9142 -0.0653 0.0585
Here's the t-test output:
t.test(df$y)
One Sample t-test
data: df$y
t = -0.0551, df = 999, p-value = 0.9561
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.06380216 0.06031609
sample estimates:
mean of x
-0.001743035
They're not exactly the same, but they're very close.