I'm working on analyzing some data that need to use lme model, but I'm not sure about interpreting the output.
Data looks like this:
> head(data)
Mouse.Number Mouse.Number.Unique Overall.Mouse Batch Day Drug Tumor.Volume X
1 1 1 1 10 -35 Cetuximab 27.4 NA
2 1 1 1 10 -31 Cetuximab 14.3 NA
3 1 1 1 10 -28 Cetuximab 19.7 NA
4 1 1 1 10 -24 Cetuximab 29.6 NA
5 1 1 1 10 -21 Cetuximab 39.1 NA
6 1 1 1 10 -17 Cetuximab 43.5 NA
Please ignore column Mouse.Number, Mouse.Number.Unique and X.
Explaining the data:
- There are negative days, but ignore them (they are the values before applying the treatment)
I want to model Tumor.Volume ~ Day*Drug, and the random part is Day|Overall.Mouse. My code is
lme_pos_1 <- lme(Tumor.Volume ~ Day*Drug, random = ~Day|Overall.Mouse, data=data_pos_10)
Summary is:
> summary(lme_pos_1)
Linear mixed-effects model fit by REML
Data: data_pos_10
AIC BIC logLik
2364.189 2405.549 -1170.094
Random effects:
Formula: ~Day | Overall.Mouse
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 42.215374 (Intr)
Day 4.059765 0.455
Residual 23.012150
Fixed effects: Tumor.Volume ~ Day * Drug
Value Std.Error DF t-value p-value
(Intercept) 108.32758 12.319403 195 8.793249 0.0000
Day -1.99631 1.142348 195 -1.747546 0.0821
DrugDacomitinib 15.03261 26.337891 37 0.570760 0.5716
DrugErlotinib 41.38484 18.198080 37 2.274132 0.0289
DrugVehicle 43.08154 18.204460 37 2.366538 0.0233
Day:DrugDacomitinib 0.03427 2.874163 195 0.011923 0.9905
Day:DrugErlotinib 12.28038 1.797236 195 6.832924 0.0000
Day:DrugVehicle 13.71968 1.806300 195 7.595461 0.0000
Correlation:
(Intr) Day DrgDcm DrgErl DrgVhc Dy:DrD Dy:DrE
Day 0.382
DrugDacomitinib -0.468 -0.179
DrugErlotinib -0.677 -0.259 0.317
DrugVehicle -0.677 -0.258 0.317 0.458
Day:DrugDacomitinib -0.152 -0.397 0.174 0.103 0.103
Day:DrugErlotinib -0.243 -0.636 0.114 0.262 0.164 0.253
Day:DrugVehicle -0.242 -0.632 0.113 0.164 0.258 0.251 0.402
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.81026418 -0.52194774 -0.07643594 0.53258816 2.77830783
Number of Observations: 240
Number of Groups: 41
I'm not sure about how to get information from the output, like is this a good model, how can I know it? What values are important, etc.
Basically I want to know:
- in random effects part, what does the standard deviation stands for?
- what does the correlation part want to imply?
- how to know if this is a good model or not, and how can I improve it? (I tried some qqnorm plot and residual plot, they all seem ok)