In a standard regression problem
\begin{equation} \mathbf{y} = \mathbf{X} \beta + \mathbf{e} \ , \end{equation}
the solution to $\beta$ when the system is overdetermined is $\hat{\beta}= \left(\mathbf{X}\Sigma^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^T\Sigma^{-1}\mathbf{y}$, where $\Sigma = \sigma^{-2} \operatorname{Var}(\mathbf{e})$.
The solution to an underdetermined system when $\Sigma\equiv \mathbf{I}$ is $\hat{\beta} = \mathbf{X}^T\left(\mathbf{X}\mathbf{X}^T\right)^{-1}\mathbf{y}$. Can a similar formula to the least squares case be written when $\Sigma \ne \mathbf{I}$ such that $\hat{\beta} = \mathbf{X}^T\Sigma^{-1}\left(\mathbf{X}\mathbf{X}^T\Sigma^{-1}\right)^{-1} \mathbf{y}$?
I have not been able to find any good references on this system and would appreciate if you could suggest any also.