Where X is a r.v. following a symmetric T distribution with 0 mean and tail parameter $\alpha$.
I am looking for the distribution of the n-summed variable $ \sum_{1 \leq i \leq n}|x_i|$.
$Y=|X|$ has for PDF $\frac{2 \left(\frac{\alpha }{\alpha +y^2}\right)^{\frac{\alpha +1}{2}}}{\sqrt{\alpha } B\left(\frac{\alpha }{2},\frac{1}{2}\right)}$, $y \geq 0 $. I managed to get the characteristic function $C(t)$ but could not invert the convolution, that is, $C(t)^n$. Thank you for the help.