I am performing deviance goodness-of-fit test on my model (used negative binomial regression), and the R summary()
table of my model gives the following:
Call:
glm.nb(formula = topPagesCount ~ DB_LEGAL_STATUS_CODE_V2 + BCORP_INDUSTRY_DENSITY +
DENSE_MSA + DENSE_MSA * BCORP_INDUSTRY_DENSITY, data = greatDF,
control = glm.control(maxit = 100), init.theta = 0.2103980872,
link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9154 -1.2815 -0.7786 -0.2994 2.3033
Coefficients:
Estimate Std. Error z value Pr(>|z|)
( Intercept) 4.4117492 0.4566746 9.661 < 2e-16 ***
DB_LEGAL_STATUS_CODE_V212 -0.6420125 0.3006310 -2.136 0.03272 *
BCORP_INDUSTRY_DENSITY 0.0067614 0.0092156 0.734 0.46314
DENSE_MSA 0.0311327 0.0104588 2.977 0.00291 **
BCORP_INDUSTRY_DENSITY:DENSE_MSA -0.0006298 0.0002075 -3.035 0.00241 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(0.2104) family taken to be 1)
Null deviance: 393.12 on 304 degrees of freedom
Residual deviance: 362.31 on 300 degrees of freedom
AIC: 2794.2
Number of Fisher Scoring iterations: 1
Theta: 0.2104
Std. Err.: 0.0158
2 x log-likelihood: -2782.1530
the dispersion parameter of 0.2104 is getting me little confused...is it supposed to be a good thing? or is this a bad thing?
thank you