The moment generating function of a random variable $X$ is defined to be the function $$M_{X}(t)=E(e^{tX})=\sum_{n=0}^{\infty}\frac{E(X^n)}{n!}t^n.$$ Let $I=\{t\in\mathbb R:M_{X}(t)<\infty\}.$
I wish to show that
$I$ is possibly a degenerate interval and $0\in I$. (Degenerate means the interval includes only one real number.)
$M_{X}(t)$ is a convex function on $I$.
If $0$ is an interior point of $I$, then $E(X^k)\lt\infty$ for all $k\in \mathbb N$; i.e., $X$ has finite moments of all orders.