A simplified regression equation $ES=\frac{a+b}{n_1+n_2}$ has been suggested as an alternative to Egger's regression equation $\frac{ES}{SE}=\frac{a+b}{SE}$, where ES=Effect Size, $n_1$=sample size of the patients, $n_2$=sample size of the controls, SE=Standard Error.
This alternative test, that was presented by Peters et al. in their 2006 paper in JAMA, is supposed to be better than Egger's test when the ES is the lnOR.
This alternative test could also be valuable in cases Standard Error (SE) cannot be calculated, as SE is not taking part in the equation.
Could this alternative Egger's test be used with the other types of Effect Size? When the ES is the SMD? When the ES is the RR? When the ES is the Pearson's correlation coefficient?