\begin{align}
y &= \Phi(x_1,x_2,\rho)
= \int_{-\infty}^{x_1}\left[\int_{-\infty}^{x_2} \phi(a,b,\rho)\,\mathrm
db\right]\,\mathrm da\\
\frac{\partial y}{\partial x_1}
&= \frac{\partial}{\partial x_1}\Phi(x_1,x_2,\rho) = \frac{\partial}{\partial x_1}\int_{-\infty}^{x_1}
\left[\int_{-\infty}^{x_2} \phi(a,b,\rho)\,\mathrm db\right]\,\mathrm da\\
&= \int_{-\infty}^{x_2} \phi(x_1,b,\rho)\,\mathrm db
\end{align}
via the rule for differentiating under the integral sign. Similarly,
$$\frac{\partial y}{\partial x_2} = \int_{-\infty}^{x_1} \phi(a,x_2,\rho)\,\mathrm da.$$
If you don't recall the rule for differentiating integrals, see for
example, the comments following
this answer on math.SE.
The derivative with respect to $\rho$ is straightforward to find but
messy in its details. We have that
$$\phi(x_1,x_2,\rho)=\frac{1}{2\pi\sqrt{1-\rho^2}}
\exp\left[-\frac{x^2 -2\rho xy + y^2}{2(1-\rho^2)}\right]$$
whose partial derivative with respect to $\rho$ is left to the OP to find.
If $g(x_1,x_2,\rho)$ denotes this partial derivative, then
$$\frac{\partial}{\partial \rho}\Phi(x_1,x_2,\rho) = \frac{\partial}{\partial \rho}\int_{-\infty}^{x_1}
\left[\int_{-\infty}^{x_2} \phi(a,b,\rho)\,\mathrm db\right]\,\mathrm da
= \int_{-\infty}^{x_1}
\int_{-\infty}^{x_2} g(a,b,\rho)\,\mathrm db\,\mathrm da$$