$y_i=\beta_0+\beta_1x_i+\varepsilon $ is a simple linear model.
We know $R^2=1-\frac{SSE/(n-k-1)}{SST/(n-1)} $ where
$SSE=Y'(I-H)Y=\sum(y_i-\hat{y})^2$
and $SST=Y'(I-P_1)Y=\sum(y_i-\bar{y})^2$
(for $H=X(X'X)^{-1}X'$ and $P_1=\frac{1}{n}\mathbf{11'}$ and $\mathbf{1}=(1,\cdots,1)_{1\times n}'$, $Y=(y_1,y_2,\cdots,y_n)'$,$X=\begin{bmatrix} 1 & x_{11}\\ 1& x_{21}\\ \vdots&\vdots \\ 1&x_{n1 } \end{bmatrix}$)
Define $r=\frac{\sum (y_i-\bar{y})(x_i-\bar{x})}{\sqrt{\sum (y_i-\bar{y})^2\sum (x_i-\bar{x} )^2}}$.
Show $R^2=r^2$
Thanks in advance.