The dependent variable of my problem is highly concentrated around zero. Here is a stemplot
The decimal point is 6 digit(s) to the right of the |
-2 | 511
-1 | 92221
-0 | 87777666666665555555555555555444444444444444444444444444444433333333+2428
0 | 00000000000000000000000000000000000000000000000000000000000000000000+2113
1 | 00000000000000000000000000000000000011111111111111111111111111111122+110
2 | 0000000000111111233333444444555666666677778889
3 | 00112457778889
4 | 11233456999
5 | 0000389
6 | 01477
7 | 259
8 | 033
9 | 002356
10 | 9
11 |
12 |
13 | 069
14 |
15 |
16 |
17 | 13
Normally when I have a dependent variable (DV) that looks like this I apply a logarithmic transformation for reasons both economical and mathematical. But obviously this will not work in this case as I have values below zero.
Is there another monotonically increasing transformation function that will reduce the peakedness of this distribution?