I fitted an hyperbolic distribution to my data with the hyperbFit(mydata,hessian=TRUE)
command (package HyperbolicDist). The hessian looks like:
> hyperbfitmymodel$hessian
hyperbPi lZeta lDelta mu
hyperbPi 536.61654 -23.82800 25.62345 26153.16561
lZeta -23.82800 250.74196 -261.20570 -35.58481
lDelta 25.62345 -261.20570 272.77771 182.75927
mu 26153.16561 -35.58481 182.75927 2028904.75586
Now I want to calculate the variance-covariance matrix of the parameter estimates, according to this page 2:
The asymptotic covariance matrix of $\hat{\theta}$ is given by the inverse of the negative of the Hessian matrix evaluated at $\hat{\theta}$.
I therefore calculate:
solve(-hyperbfitalv$hessian)
which gives
hyperbPi lZeta lDelta mu
hyperbPi -5.113433e-03 -0.0091511819 -0.0083271877 6.650321e-05
lZeta -9.151182e-03 -1.6617499980 -1.5905496996 2.320893e-04
lDelta -8.327188e-03 -1.5905496996 -1.5261031428 2.169113e-04
mu 6.650321e-05 0.0002320893 0.0002169113 -1.365591e-06
This looks clearly wrong to me, because there are negative values for the variance, but a variance cannot be negative? The covariance yes, but not the variance?
EDIT: The complete output of hyperbFit(mydata,hessian=TRUE)
:
Data: mydata
Parameter estimates:
pi zeta delta mu
0.090747 0.204827 0.002035 -0.002494
Likelihood: 756.911
Method: Nelder-Mead
Convergence code: 0
Iterations: 365
2nd EDIT: If I use solve(hyperbfitalv$hessian)
I get
hyperbPi lZeta lDelta mu
hyperbPi 5.113433e-03 0.0091511819 0.0083271877 -6.650321e-05
lZeta 9.151182e-03 1.6617499980 1.5905496996 -2.320893e-04
lDelta 8.327188e-03 1.5905496996 1.5261031428 -2.169113e-04
mu -6.650321e-05 -0.0002320893 -0.0002169113 1.365591e-06
3rd EDIT: The output of summary(hyperbfitalv)
:
Data: mydata
Parameter estimates:
pi zeta delta mu
0.090747 0.204827 0.002035 -0.002494
( 0.071508) ( 0.264040) ( 0.002514) ( 0.001169)
Likelihood: 756.911
Method: Nelder-Mead
Convergence code: 0
Iterations: 365
4th EDIT: Ok, this is the hessian of pi, log(zeta), log(delta), and mu but how can I get the hessian of pi, zeta, delta and mu?