Let $A$ and $B$ denote two events, and suppose that
$\text{P}(A) = 0.2$, $\text{P}(B) = 0.3$, and $\text{P}(A\cap B) = 0.1$.
Are the following computations correct?
- $\rm{P}(A \cup B) = \rm{P}(A) + \rm{P}(B) - \rm{P}(A\cap B) = 0.4$
- $\rm{P}(B') = 1 - \rm{P}(B) = 0.7$, where $B'$ denotes the complement of $B$
- $\rm{P}(B\cap A') = \rm{P}(B)\times \rm{P}(A') = 0.24$
- $\rm{P}(A' \cup B') = \rm{P}(A') + \rm{P}(B') - \rm{P}(A'\cap B') = 0.94$
[NB: $\cup$ = "or" and $\cap$ = "and"]