If $(A, B_{1},\ldots, B_{k})$ are uncorrelated (i.e. $\mathrm{Cov}(A,B_{i})=0$ for all $i$ and $\mathrm{Cov}(B_{i},B_{j})=0$ for all $i\neq j$), then the standard deviation of $\log(Q)$ is given by:
$$
\mathrm{SD}(\log(Q))=\sqrt{\mathrm{SD}(\log(A))^{2} + \left(\frac{1}{k}\right)^{2}\cdot \sum_{i=1}^{k}\mathrm{SD}(\log(B_{i}))^{2}}
$$
Derivation
Let's define $\mathrm{Var}(X)$ as the variance of $X$ and $\mathrm{SD}(X)$ as the standard deviation of $X$, where $\mathrm{SD}(X)=\sqrt{\mathrm{Var}(X)}$. Further, we can make use of the following properties of variances where $(X, Y, X_{1}, \ldots, X_{i})$ are uncorrelated variables and where $a$ denotes a constant:
$$
\begin{align}
\mathrm{Var}(aX) &= a^{2}\mathrm{Var}(X)\\
\mathrm{Var}(X+Y) &= \mathrm{Var}(X) + \mathrm{Var}(Y)\\
\mathrm{Var}(X-Y) &= \mathrm{Var}(X) + \mathrm{Var}(Y)\\
\mathrm{Var}(X-aY) &= \mathrm{Var}(X) + a^{2}\mathrm{Var}(Y)\\
\mathrm{Var}\left(\sum_{i}X_{i}\right) &= \sum_{i}\mathrm{Var}(X_{i})\\
\end{align}
$$
Our equation has the basic form $X-a\sum_{i}Y_{i}$, where $X=\log(A), a=\frac{1}{k}$ and $Y_{i}=\log(B_{i})$. Now we can put all pieces together:
$$
\mathrm{Var}(\log(Q))=\mathrm{Var}(\log(A)) + \left(\frac{1}{k}\right)^{2}\cdot \sum_{i=1}^{k}\mathrm{Var}(\log(B_{i}))
$$
And because the standard deviation is just the square root of the variance, we can substitute the variance by the squared standard deviation and take the sqare root on both sides and get the formula above.