Similar to this question, but with more than one different sided die.
Is there a way to calculate probability distributions associated with dice, where the probability distributions for each die are not all the same?
Example: Using dice, find the probability of rolling 1 once in a set when rolling 2d4 and 1d6.
As I understand it, the long way is to calculate each event separately and then add up the events where a 1 is rolled once:
# result #of 1s
1: |{1,1,1} 3
2: |{1,1,2} 2
3: |{1,1,3} 2
4: |{1,1,4} 2
5: |{1,1,5} 2
6: |{1,1,6} 2
7: |{1,2,1} 2
8: |{1,2,2} 1
9: |{1,2,3} 1
10:|{1,2,4} 1
11:|{1,2,5} 1
12:|{1,2,6} 1
13:|{1,3,1} 2
14:|{1,3,2} 1
15:|{1,3,3} 1
16:|{1,3,4} 1
17:|{1,3,5} 1
18:|{1,3,6} 1
19:|{1,4,1} 2
20:|{1,4,2} 1
21:|{1,4,3} 1
22:|{1,4,4} 1
23:|{1,4,5} 1
24:|{1,4,6} 1
25:|{2,1,1} 2
26:|{2,1,2} 1
27:|{2,1,3} 1
28:|{2,1,4} 1
29:|{2,1,5} 1
30:|{2,1,6} 1
31:|{2,2,1} 1
32:|{2,2,2} 0
33:|{2,2,3} 0
34:|{2,2,4} 0
35:|{2,2,5} 0
36:|{2,2,6} 0
37:|{2,3,1} 1
38:|{2,3,2} 0
39:|{2,3,3} 0
40:|{2,3,4} 0
41:|{2,3,5} 0
42:|{2,3,6} 0
43:|{2,4,1} 1
44:|{2,4,2} 0
45:|{2,4,3} 0
46:|{2,4,4} 0
47:|{2,4,5} 0
48:|{2,4,6} 0
49:|{3,1,1} 2
50:|{3,1,2} 1
51:|{3,1,3} 1
52:|{3,1,4} 1
53:|{3,1,5} 1
54:|{3,1,6} 1
55:|{3,2,1} 1
56:|{3,2,2} 0
57:|{3,2,3} 0
58:|{3,2,4} 0
59:|{3,2,5} 0
60:|{3,2,6} 0
61:|{3,3,1} 1
62:|{3,3,2} 0
63:|{3,3,3} 0
64:|{3,3,4} 0
65:|{3,3,5} 0
66:|{3,3,6} 0
67:|{3,4,1} 1
68:|{3,4,2} 0
69:|{3,4,3} 0
70:|{3,4,4} 0
71:|{3,4,5} 0
72:|{3,4,6} 0
73:|{4,1,1} 2
74:|{4,1,2} 1
75:|{4,1,3} 1
76:|{4,1,4} 1
77:|{4,1,5} 1
78:|{4,1,6} 1
79:|{4,2,1} 1
80:|{4,2,2} 0
81:|{4,2,3} 0
82:|{4,2,4} 0
83:|{4,2,5} 0
84:|{4,2,6} 0
85:|{4,3,1} 1
86:|{4,3,2} 0
87:|{4,3,3} 0
88:|{4,3,4} 0
89:|{4,3,5} 0
90:|{4,3,6} 0
91:|{4,4,1} 1
92:|{4,4,2} 0
93:|{4,4,3} 0
94:|{4,4,4} 0
95:|{4,4,5} 0
96:|{4,4,6} 0
Which totals 39 out of 96 possibilities that a 1 will be rolled only once, or 40.625%
But I know there has to be formula that does this because if I can tediously count it out manually (as above), then there must be some solid math function behind it.
Through the past few days of research, I've learned that this can also be done using the cumulative distribution function. However, so far as I understand it, the cdf requires you to have the same probability for all three rolls - so it would work if I did one formula for 2d4 and then one for 1d6 but not cumulatively.
Delving deeper, it seems that the Poisson distribution may provide the probability distributions that I want, but honestly, my capacity for learning this from a formula on wikipedia is rapidly approaching zero.
If this is the correct formula (or if the answer lies with a different one), could you provide a proof using my example from above? Similarly, could you provide an example where there are several different probabilities (ex: 1d2, 2d4, 1d6, 3d10)?