I am thinking about the following model: $$ \theta \sim \mathcal{U}[c- \epsilon, c+\epsilon],\\ x \mid \theta\sim \mathcal{U}[\theta - \epsilon, \theta + \epsilon]. $$
I want to derive the marginal distribution of $x$. Intuitively, when $\theta$ takes $c-\epsilon%$ then $x \sim \mathcal{U}[c-2\epsilon, c]$ and when $\theta$ takes $c+\epsilon$ then $x \sim \mathcal{U}[c, c + 2\epsilon]$. Since $\theta$ is uniform, $x\sim \mathcal{U}[c-2\epsilon, c + 2\epsilon]$. I want to derive this formally. My attempt is $$ f(x)=\int_{c-\epsilon}^{c+\epsilon}f(x\mid\theta)f(\theta)d\theta=\int_{c-\epsilon}^{c+\epsilon}\frac{1}{2\epsilon}\frac{1}{2\epsilon}d\theta=\frac{1}{4\epsilon}\int_{c-\epsilon}^{c+\epsilon}d\theta=\frac{1}{4\epsilon}2\epsilon=\frac{1}{2\epsilon}. $$
But, this is inconsistent with $x\sim \mathcal{U}[c-2\epsilon, c + 2\epsilon]$, which I think is true. What am I missing?