Suppose that we have the following model
$$Y_{i}\sim Pois(N_{j}e^{x})$$ $$N_{j}\sim Pois(\xi_{j})$$ $$log(\xi_{j})= a+bz_{j} + \epsilon_{j}$$
With $i=1,...I, j=1,...,J$ where $x$ is a random parameter and $z_{j}$ covariates, and $\epsilon_{j}\sim N(0,1)$
My question sums up if we can use INLA to fit this Bayesian Model ??