0

For a linear model, the noncentered form is
$Y_i=\beta_0+\beta_1x_{i1}+...+\beta_kx_{ik}+\epsilon_i$ ---(a)
the centered form is
$Y_i=\alpha+\beta_1(x_{i1}-\bar{x}_1)+...+\beta_k(x_{ik}-\bar{x}_k)+\epsilon_i$ ---(b)
And we know that the matrix form of the centered form is
$Y=[j_n,X_c] (\alpha,\beta^*)'+\epsilon$ where $X_c=(I-\frac{1}{n}J_n)X$, $X=[X_1,...,X_k]$.
We could show that the estimators for $\alpha$ and $\beta^*$ are $\hat{\alpha}=\bar{Y}$ and $\hat{\beta}^*=(X_c'X_c)^{-1}X_c'Y$

My question is:
How to show $\hat{\beta}^*$ is the same as the last three elements of $\hat{\beta}=(X_a'X_a)^{-1}X_a'Y$, where $X_a=[j_n,X]$. What is the relationship between $\hat{\alpha}$ and the first element of $\hat{\beta}$?

user10386405
  • 137
  • 6
  • What you ask to show isn't true. You seem to assume there are just three explanatory variables. Because this question concerns the relationship between the uncentered and centered formulas, perhaps you will find https://stats.stackexchange.com/a/108862/919 helpful: it shows how centering amounts to one row-reduction pass ("Gaussian elimination") in solving the original (uncentered) equations. – whuber Dec 04 '21 at 14:51
  • That's how the question was asked....But if you assume there are only three explanatory variables, how would you prove it? – user10386405 Dec 05 '21 at 06:53

1 Answers1

1

The key to answering the question is to use the inverse of a 2x2 block matrix. The following formula is useful. Suppose $\boldsymbol{A}$ and $\boldsymbol{D}$ are invertible, then \begin{eqnarray*} \begin{pmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D} \end{pmatrix}^{-1} &=& \begin{pmatrix} \left(\boldsymbol{A}-\boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}\right)^{-1} & 0 \\ 0 & \left(\boldsymbol{D}-\boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{B}\right)^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{I} & -\boldsymbol{B}\boldsymbol{D}^{-1} \\ -\boldsymbol{C}\boldsymbol{A}^{-1} & \boldsymbol{I} \end{pmatrix}. \end{eqnarray*} Consider the partition $\boldsymbol{X}_a = \left[\boldsymbol{j}_n, \boldsymbol{X}\right]$. Likewise, we shall partition the regression parameters into an intercept term and slope terms \begin{eqnarray*} \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \boldsymbol{\beta}^{\ast} \end{pmatrix}. \end{eqnarray*}

Clearly, $\widehat{\boldsymbol{\beta}} = \left(\boldsymbol{X}_a^{\prime} \boldsymbol{X}_a\right)^{-1}\boldsymbol{X}_a^{\prime} \boldsymbol{y}$. Therefore, \begin{eqnarray*} \begin{pmatrix} \widehat{\beta}_0 \\ \widehat{\boldsymbol{\beta}}^{\ast} \end{pmatrix} &=& \begin{pmatrix} n & \boldsymbol{j}_n^{\prime} \boldsymbol{X} \\ \boldsymbol{X}^{\prime} \boldsymbol{j}_n & \boldsymbol{X}^{\prime}\boldsymbol{X} \end{pmatrix}^{-1} \begin{pmatrix} \boldsymbol{j}_n^{\prime} \boldsymbol{y} \\ \boldsymbol{X}^{\prime}\boldsymbol{y} \end{pmatrix} \\ &=& \begin{pmatrix} \left(n -\boldsymbol{j}_n^{\prime} \boldsymbol{X} \left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\prime} \boldsymbol{j}_n\right)^{-1} & 0 \\ 0 & \left(\boldsymbol{X}^{\prime} \left[\boldsymbol{I}_n - \frac{\boldsymbol{J}_n}{n}\right]\boldsymbol{X}\right)^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{j}_n^{\prime}\left[\boldsymbol{I}_n - \boldsymbol{X} \left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\prime}\right]\boldsymbol{y} \\ \boldsymbol{X}^{\prime}\left[\boldsymbol{I}_n - \frac{\boldsymbol{J}_n}{n}\right]\boldsymbol{y} \end{pmatrix} \end{eqnarray*}

user277126
  • 1,136
  • 3
  • 9
  • Thanks for the answer! But I have one more follow-up question. The first element I got is $\frac{j_n'(I-X(X'X)^{-1}X')Y}{j_n'(I-X(X'X)^{-1}X')j_n}$. What's the relationship with $\hat{\alpha}=\bar{Y}$? I tried to simplify $\frac{j_n'(I-X(X'X)^{-1}X')Y}{j_n'(I-X(X'X)^{-1}X')j_n}$ but the denominator turns 0 (I assume $Mj_n=j_n$?) – user10386405 Dec 06 '21 at 02:53
  • Clearly $\widehat{\beta}_0 = \widehat{\alpha} - \frac{j_n^{\prime}}{n} \boldsymbol{X} \widehat{\boldsymbol{\beta}}^{\ast}$. Next, use the Sherman-Morrison formula to reduce the term $\left(\boldsymbol{X}^{\prime} \left[\boldsymbol{I}_n - \frac{\boldsymbol{J}_n}{n} \right] \boldsymbol{X}\right)^{-1}$ and it should simply to the formula you are working with. Just work in the other direction. https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula – user277126 Dec 06 '21 at 04:32
  • How did you get $\hat{\beta}_0=\hat{\alpha}-\frac{j_n'}{n}X\hat{\beta}^*$ so qucikly? – user10386405 Dec 07 '21 at 00:52
  • I might need more details..... – user10386405 Dec 07 '21 at 01:28
  • Compare the model in centered form and uncentered form. In the uncentered form, we have the intercept term $\beta_0$, not depending on changing covariates, whereas in the centered form we must collect all terms $\alpha - \frac{\boldsymbol{j}_n^{\prime}}{n} \boldsymbol{X} \boldsymbol{\beta}^{\ast}$ to obtain the total intercept term. You can reparametrize these into the single term $\beta_0$. – user277126 Dec 07 '21 at 02:08
  • I got it. Thank you so much – user10386405 Dec 07 '21 at 02:16