Assuming that I have a custom cross-entropy-like loss function defined as below, how can I prove that the loss function is classification-calibrated?
$$ L=-\frac{1}{n}\sum_{i=1}^n\sum_{j=1}^c w_j^{(1-p_{ij})} \; y_{ij} \; \log \, (p_{ij}) - p_{ij}(1-p_{ij}) $$
where $w_j$ is the class weight of class $j$, $y_{ij}$ is the $j^{th}$ element of one-hot encoded label of the instance $\textbf{x}_i$ and $p_{ij}$ is the predicted probability of the class $j$ of instance $i$.