I want to get the distribution of the following quantity:
$\sum_{i=1}^{N} M_i \cdot \overline e $
where:
- $M_i$ with $i=1,...,N$ are constant values
- $\overline e$ is a normally distributed random variable, let's say $\overline e \sim N(\mu, \sigma^2)$
My doubt is between these two solutions:
$\sum_{i=1}^{N} M_i \cdot \overline e \:=\: \overline e \, \cdot \sum_{i=1}^{N} M_i \: \sim N(\sum_{i=1}^{N} M_i \cdot \mu, [\sum_{i=1}^{N} M_i]^2 \cdot \sigma^2)$
$\sum_{i=1}^{N} M_i \cdot \overline e \: = \: \sum_{i=1}^{N} (M_i \cdot \overline e) \; \Rightarrow \; (M_i \cdot \overline e) \sim N(M_i\cdot\mu, M_i^2\cdot\sigma^2) \; \\ \Rightarrow \; \sum_{i=1}^{N} M_i \cdot \overline e \: \sim \: N(\sum_{i=1}^{N}M_i\cdot\mu\,,\, \sum_{i=1}^{N}[M_i^2\cdot\sigma^2])$
Which one of the two is correct? Why?
Thank you in advance for your answer!!!