$x \in R$ is a continuous random variable.
Is the statement : IF $\int_{-\infty}^{\infty} x^3 f(x) dx < \infty$ then: $Cov(X,X)<\infty$ .TRUE?
My thought was that Var(x)=Cov(x,x) , so $Var(x)= E(x^2) - E^2(x)$. Hence
both $\int_{-\infty}^{\infty} x^2 f(x) dx < \infty$ and $\int_{-\infty}^{\infty} x f(x) dx < \infty$
so I think the Question can be written as:
Is it true that IF $\int_{-\infty}^{\infty} x^3 f(x) dx < \infty$ then both $\int_{-\infty}^{\infty} x^2 f(x) dx < \infty$ and $\int_{-\infty}^{\infty} x f(x) dx < \infty$?.
It looks False to me. But I am not sure how to prove it.