0

So basically I've been trying to use CNN for face recognition. And I think that my model is suffering from overfitting since the validation loss is not decreasing yet the training is doing well. For this code I used the Pins Face Recognition dataset and here is the code I used below:

output:

enter image description here

Data preparing

import glob
import os
import numpy as np 
import matplotlib.pyplot as plt

def main():
    train_data_dir = r'C:\Users\USER\Downloads\cnn-identity-classification-master\data\train'
    validation_data_dir = r'C:\Users\USER\Downloads\cnn-identity-classification-master\data\val'

    preped_train_data_dir = r'C:\Users\USER\Downloads\cnn-identity-classification-master\data\data_preped\train'
    preped_validation_data_dir = r'C:\Users\USER\Downloads\cnn-identity-classification-master\data\data_preped\val'

    if not os.path.exists(preped_train_data_dir) and not os.path.exists(preped_validation_data_dir):
        os.makedirs(preped_train_data_dir)
        os.makedirs(preped_validation_data_dir)

    for filename in glob.iglob(train_data_dir+"\**", recursive=True):
        #print(filename)
        if os.path.isfile(filename): # filter dirs
            file_ = filename.split("\\")[8]
            file_class = filename.split("\\")[7]
            img = cv2.imread(filename, cv2.IMREAD_COLOR)
            face, found_face = detect_faces("data\haarcascade_frontalface_alt.xml", img)
            if (found_face is True):
                face = cv2.resize(face,(200, 200))
                if not os.path.exists(preped_train_data_dir+"/"+file_class):
                    os.mkdir(preped_train_data_dir+"/"+file_class)
                #print(preped_train_data_dir+"/"+file_class+"/"+file_)
                cv2.imwrite(preped_train_data_dir+"/"+file_class+"/"+file_,face)
            else:
                print('Did not find any faces!')

    
    for filename in glob.iglob(validation_data_dir+"\**", recursive=True):
        print(filename)
        if os.path.isfile(filename): # filter dirs
            file_ = filename.split('\\')[8]
            file_class = filename.split('\\')[7]
            img = cv2.imread(filename, cv2.IMREAD_COLOR)
            face, found_face = detect_faces("data\haarcascade_frontalface_alt.xml", img)
            if found_face:
                face = cv2.resize(face,(200, 200))
                if not os.path.exists(preped_validation_data_dir+"/"+file_class):
                    os.mkdir(preped_validation_data_dir+"/"+file_class)
                #print(preped_validation_data_dir+"/"+file_class+"/"+file_)
                cv2.imwrite(preped_validation_data_dir+"/"+file_class+"/"+file_, face)
            else:
                print('Did not find any faces!')

def detect_faces(cascPath, img):
    faces_data = []
    faces_img_data = []
    faceCascade = cv2.CascadeClassifier(cascPath)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = faceCascade.detectMultiScale(
    gray,
    scaleFactor=1.1,
    minNeighbors=5,
    minSize=(30, 30),
    flags = cv2.CASCADE_SCALE_IMAGE
    )
    face = []
    found_face = False
    for (x, y, w, h) in faces:
        cropped = gray[y-200:y+h+400, x-200:x+w+400]
        faces_img_data.append(cropped)
        faces_data.append([x-200, y-200, w+400, h+400])
        # only returning first face found
        face = faces_img_data[0]
        found_face = True
        if len(faces_data) > 1:
            print("found multiple faces!")
    
    return np.array(face), found_face

if __name__ == "__main__":
    main() 

Training :

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import keras
import uuid
import numpy as np
import os
import json

from PIL import Image as pil


def main():
    model, class_dictionary, model_uuid = initialTrain(img_width = 200, img_height = 200, train_data_dir = r'C:\Users\USER\Downloads\cnn-identity-classification-master\data\data_preped\train', validation_data_dir = r'C:\Users\USER\Downloads\cnn-identity-classification-master\data\data_preped\val', model_directory_path = 'data/trainedModels',
                                                epochs = 200, batch_size = 3)

def initialTrain(img_width, img_height, train_data_dir, validation_data_dir, model_directory_path,
                epochs, batch_size):

    class_dictionary = None

    if K.image_data_format() == 'channels_first':
        input_shape = (3, img_width, img_height)
    else:
        input_shape = (img_width, img_height, 3)

    # this is the augmentation configuration we will use for training
    train_datagen = ImageDataGenerator(
        rescale=1. / 255,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True)

    # this is the augmentation configuration we will use for testing:
    # only rescaling
    test_datagen = ImageDataGenerator(rescale=1. / 255)

    train_generator = train_datagen.flow_from_directory(
        train_data_dir,
        target_size=(img_width, img_height),
        batch_size=batch_size,
        class_mode='binary')

    class_dictionary = train_generator.class_indices

    model = Sequential()
    model.add(Conv2D(32, (5, 5), input_shape=input_shape))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(170, (3, 3)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(len(class_dictionary.keys())))
    model.add(Activation('softmax'))


    model.compile(loss='sparse_categorical_crossentropy',
                    optimizer="SGD",
                    metrics=['accuracy'])

    validation_generator = test_datagen.flow_from_directory(
        validation_data_dir,
        target_size=(img_width, img_height),
        batch_size=batch_size,
        class_mode='binary')

    model.fit(
        train_generator,
        epochs=epochs,
        validation_data=validation_generator)

    if not os.path.exists(model_directory_path):
        os.makedirs(model_directory_path)

    model_uuid = str(uuid.uuid1())
    print("Model id: " + model_uuid)
    model.save(model_directory_path+'/model_'+model_uuid+'.h5')

    class_indices_file = open(model_directory_path+'/class_indices_file.txt','w')
    class_indices_file.write(str(class_dictionary))
    class_indices_file.close()

    return model, class_dictionary, model_uuid


if __name__ == "__main__":
    main()



  • @AryaMcCarthy Kinda even though I've tried some of the solutions already and the result is quite the same..so maybe i should check the data used – ghassen chaieb Aug 21 '21 at 23:46

0 Answers0