Recall from matrix rules that:
(1) the matrix multiplication operator is distributive with respect to addition, meaning $A(B+C)=AB+AC$
(2) the transpose operator respects addition, meaning $(A+B)^T=A^T+B^T$.
Starting with the leftmost term (neglect the $\frac{1}{2}$ for now): from (1) we get
$$(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)=(x-\mu_0)^T\Sigma^{-1}x-(x-\mu_0)^T\Sigma^{-1}\mu_0$$
and from (2):
$$(x-\mu_0)^T\Sigma^{-1}x=x^T\Sigma^{-1}x-\mu_0^T\Sigma^{-1}x$$
and so the leftmost term can be written as
$$\frac{1}{2}(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)=\frac{1}{2}\left(x^T\Sigma^{-1}x-\mu_0^T\Sigma^{-1}x-x^T\Sigma^{-1}\mu_0+\mu_0^T\Sigma^{-1}\mu_0\right)$$
adding up both terms:
$$-(x-\mu_1)^T\Sigma^{-1}(x-\mu_1)/2+(x-\mu_0)^T\Sigma^{-1}(x-\mu_0)/2=
\frac{1}{2}\left(
-x^T\Sigma^{-1}x+\mu_1^T\Sigma^{-1}x+x^T\Sigma^{-1}\mu_1-\mu_1^T\Sigma^{-1}\mu_1+x^T\Sigma^{-1}x-\mu_0^T\Sigma^{-1}x-x^T\Sigma^{-1}\mu_0+\mu_0^T\Sigma^{-1}\mu_0
\right)=
\frac{1}{2}\left(
\mu_1^T\Sigma^{-1}x-\mu_0^T\Sigma^{-1}x+x^T\Sigma^{-1}\mu_1-x^T\Sigma^{-1}\mu_0-\mu_1^T\Sigma^{-1}\mu_1+\mu_0^T\Sigma^{-1}\mu_0
\right)=
\frac{1}{2}\left(
(\mu_1-\mu_0)^T\Sigma^{-1}x+x^T\Sigma^{-1}(\mu_1-\mu_0)-\mu_1^T\Sigma^{-1}\mu_1+\mu_0^T\Sigma^{-1}\mu_0
\right)
$$
Now, note three things: (a) the transpose of a scalar is a scalar itself; (b) $\left((\mu_1-\mu_0)^T\Sigma^{-1}x\right)^T=x^T\Sigma^{-1}(\mu_1-\mu_0)$ and (c) $x^T\Sigma^{-1}(\mu_1-\mu_0)$ is a scalar, so we can add up:
$$\frac{1}{2}\left(
(\mu_1-\mu_0)^T\Sigma^{-1}x+x^T\Sigma^{-1}(\mu_1-\mu_0)-\mu_1^T\Sigma^{-1}\mu_1+\mu_0^T\Sigma^{-1}\mu_0
\right)=\frac{1}{2}\left(2(\mu_1-\mu_0)^T\Sigma^{-1}x
-\mu_1^T\Sigma^{-1}\mu_1+\mu_0^T\Sigma^{-1}\mu_0
\right)$$
$$=(\mu_1-\mu_0)^T\Sigma^{-1}x+\frac{1}{2}\left(\mu_0^T\Sigma^{-1}\mu_0
-\mu_1^T\Sigma^{-1}\mu_1
\right)$$
$\blacksquare$.