I am trying to find the conditional distribution of a trivariate gaussian. So here is a hypothetical trivariate gaussian: $$\mathcal{N}(\mu_{ABC},\Sigma_{ABC}),\;\mu_{ABC}=\begin{bmatrix}\mu_A \\ \mu_B \\ \mu_C \end{bmatrix},\;\Sigma_{ABC}=\begin{bmatrix} \sigma^2_{AA} & \sigma^2_{AB} & \sigma^2_{AC}\\ \sigma^2_{BA} & \sigma^2_{BB} & \sigma^2_{BC} \\ \sigma^2_{CA} & \sigma^2_{CB} & \sigma^2_{CC} \end{bmatrix}$$
I would like to find the conditional distribution parameters as follows:
$$\mu_{A}|B,C$$ $$\Sigma_{A}|B,C$$
To get the resulting distribution $$\mathcal{N}(\mu_{A},\Sigma_{A}|B,C)$$