0

I'm trying to clasify author age group ('under 21','young adult', 'adult). I'm working on this example: https://colab.research.google.com/github/tensorflow/text/blob/master/docs/tutorials/classify_text_with_bert.ipynb#scrollTo=KiC1mzAnBR5Y.

I have provided my train, test and validation data:

  • training: 31738 files belonging to 3 classes.
  • validation: 3968 files belonging to 3 classes.
  • test: 3966 files belonging to 3 classes.

I have changed:

  • net = tf.keras.layers.Dense(3, activation=None, name='classifier')(net)
  • classifier_model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy', metrics=['accuracy'])

I have tried:

  • changing dropout rate
  • changing batch size
  • changing lerning rate
  • different model (talking-heads_base)
  • different optimizer (adam/adamw)
  • different loss function(mae)
  • addding activation function('relu')

**

The accuracy is always near 0.3333 while loss function is decreasing

** as you can see in chart:. validation loss/test loss/accuracy

0 Answers0