I'll assume that $X \sim N(\mu, \sigma^2)$, then, $\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$, therefore,
$$P( Z_{\alpha / 2} \leq \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \leq Z_{1 - \alpha/2}) = 1-\alpha $$
Some algebra,
$$P( \frac{\sigma}{\sqrt{n}} Z_{\alpha / 2} \leq \bar{X} - \mu \leq \frac{\sigma}{\sqrt{n}}Z_{1 - \alpha/2}) = 1-\alpha $$
Subtracting the average,
$$P( \frac{\sigma}{\sqrt{n}} Z_{\alpha / 2} - \bar{X} \leq - \mu \leq \frac{\sigma}{\sqrt{n}}Z_{1 - \alpha/2} - \bar{X}) = 1-\alpha $$
Now we multiply by -1, so we need to change the direction of the inequalities,
$$P( - \frac{\sigma}{\sqrt{n}} Z_{\alpha / 2} + \bar{X} \geq \mu \geq -\frac{\sigma}{\sqrt{n}}Z_{1 - \alpha/2} + \bar{X}) = 1-\alpha $$
Rearrange,
$$P( \bar{X} -\frac{\sigma}{\sqrt{n}}Z_{1 - \alpha/2} \leq \mu \leq \bar{X} - \frac{\sigma}{\sqrt{n}} Z_{\alpha / 2} ) = 1-\alpha $$
We now note, that $Z_{\alpha /2} = -Z_{1- \alpha/ } $ due to the symmetry of the standard normal distribution with respect to 0
$$P( \bar{X} -\frac{\sigma}{\sqrt{n}}Z_{1 - \alpha/2} \leq \mu \leq \bar{X} + \frac{\sigma}{\sqrt{n}} Z_{1 - \alpha / 2} ) = 1-\alpha, $$
which means the CI can also be written as $\bar{X} \pm \frac{\sigma}{\sqrt{n}} Z_{1 - \alpha / 2} $.