Are you familiar with linear algebra?
Let $Y=X\beta+\epsilon$. $\hat\beta=(X^TX)^{-1}X^TY$ and $\hat Y=X\hat\beta=PY$, where $P=X(X^TX)^{-1}X^T$. The $P$ matrix is symmetric and idempotent, it is the projection matrix of $Y$ onto $\mathcal{C}(X)$, the column space of $X$ (see Wikipedia).
Let $1$ be a column vector of ones and $J=11^T$ a square matrix of ones. You have:
$$1^TY=\sum_iY_i,\qquad JY=\begin{bmatrix} \sum_iY_i \\ \vdots \\ \sum_iY_i \end{bmatrix}, \qquad \frac1n JY=\begin{bmatrix}\frac1n\sum_iY_i\\ \vdots \\ \frac1n\sum_iY_i\end{bmatrix}=\begin{bmatrix}\bar Y\\ \vdots \\ \bar Y\end{bmatrix}$$
The $n^{-1}J$ matrix is symmetric and idempotent.
In matrix form, $$\begin{align*}\sum_i(Y_i-\hat Y_i)^2&=(Y-PY)^T(Y-PY)\\ \sum_i(\hat Y_i-\bar Y)^2&=(PY-n^{-1}JY)^T(PY-n^{-1}JY)\\ 2\sum_i(Y_i-\hat Y_i)(\hat Y_i-\bar Y)&=2(Y-PY)^T(PY-n^{-1}JY) \\ &=2Y^T(I-P)^T(P-n^{-1}J)Y\end{align*}$$
where $I$ is the identity matrix.
$(I-P)^T(P-n^{-1}J)=P-n^{-1}J-P+Pn^{-1}J=Pn^{-1}J-n^{-1}J$. But $P$ is the projection matrix onto $\mathcal{C}(X)$, so if there is a column of ones in $X$, then each column of $J$ is in $\mathcal{C}(X)$, $PJ=J$ (each column in $J$ is projected onto itself) and $Pn^{-1}J=n^{-1}PJ=n^{-1}J$.
Therefore, $Pn^{-1}J-n^{-1}J=n^{-1}J-n^{-1}J=0$.
This is why "In a model with an intercept, it can be shown that the third term on the right hand side is zero." As to "this can not be shown for a model without an intercept" (notice that "this can not be shown" is not "this can not happen"), the third term could be zero even in a model without an intercept, but only if the columns in $X$ generate a vector of ones.