$Curve Model f(x) = ax^2 + bx + c$
$Data(x,y) = {(x_1,y_1),(x_2,y_2)...(x_n,y_n)}$
$Square Error = {E_1,E_2...E_n}$
SSE: sum of SE
$Initial values = {a=1 ,b=1, c=1}$
I'm new to statistics. In nonlinear regression, could I find best fitting coefficients by changing the initial values?