I have 12 concentrations that I would like to compare between 2 groups, some subjects have 2 measures. I know the concentration is also depending on age and sex so I added those to the linear model and included a random intercept to account for repeated measures in some of the subjects.
I have now the following:
conc1 ~ studygroup + time + sex + (1/subject)
conc2 ~ studygroup + time + sex + (1/subject)
conc3 ~ studygroup + time + sex + (1/subject)
...
conc12 ~ studygroup + time + sex + (1/subject)
FDR correction on p-values and CI for beta estimate of studygroup (?)
enter code here
studygroup conc1: estimate, p-value, CI
studygroup conc2: estimate, p-value, CI
studygroup conc3: estimate, p-value, CI
...
studygroup conc12: estimate, p-value, CI
I would like to know how to correct for multiple testing in such a case using FDR. If someone has a reference describing this with some guidance on what to do with p-values and CI, that would be great. Alternatively, resources and thoughts on why not to do this would also be welcome!
I found a post suggesting it is necessary to correct, however I am highly confused at this point.
Do I have to correct for multiple testing?
Should we address multiple comparisons adjustments when using confidence intervals?