I'm trying to test heteroskedasticity in different models namely in linear regreesion model, polynomial regression model, and generalized additive model. Using the ols_test_breusch_pagan
function library(olsrr)
I can test heteroskedasticity for linear and polynomial models but I couldn't figure out how to test heteroskedasticity in the generalized additive model (GAM). I followed the below process to test heteroskedasticity in the linear and polynomial models.
##################
###Linear Model###
##################
>sm1 <- lm(adN ~ GC3 , data = train.data)
>ols_test_breusch_pagan(sm1)
###########################################
Breusch Pagan Test for Heteroskedasticity
-----------------------------------------
Ho: the variance is constant
Ha: the variance is not constant
Data
-------------------------------
Response : adN
Variables: fitted values of adN
Test Summary
-----------------------------
DF = 1
Chi2 = 0.04513367
Prob > Chi2 = 0.8317584
######################
###Polynomial Model###
######################
>poly_degree(train.data$GC3, train.data$adN, type = "BIC")
5
>pm1 <- lm(adN ~ poly(GC3, 5, raw = TRUE), data = train.data)
>ols_test_breusch_pagan(pm1)
Breusch Pagan Test for Heteroskedasticity
-----------------------------------------
Ho: the variance is constant
Ha: the variance is not constant
Data
-------------------------------
Response : adN
Variables: fitted values of adN
Test Summary
-----------------------------
DF = 1
Chi2 = 0.02017309
Prob > Chi2 = 0.8870547
Therefore, It suggests that the polynomial model is better for addressing heteroskedasticity in the data.
Now I want to know how can I test heteroskedasticity in the generalized additive model (GAM).
I used library(mgcv)
to fit GAM.
################################
###Generalized Additive Model###
################################
gm1 <- gam(adN ~ s(GC3), data = train.data)
This is a humble request that it will be an immense help if someone kindly let me know the solution of the above issue.