Suppose I have two random variable $X$ and $Y$ and they are distributed joint normally and $Y$ is truncated above by constant $c$
$$\begin{pmatrix} X \\ Y \end{pmatrix} = TN\left(\underbrace{\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}}_{\text{mean}},\underbrace{\begin{pmatrix} \sigma^2_x & \rho\sigma_x\sigma_y \\ \rho\sigma_x\sigma_y & \sigma^2_y \end{pmatrix}}_{\text{variance matrix}},\underbrace{\begin{pmatrix} -\infty \\ -\infty \end{pmatrix}}_{\text{under bound}},\underbrace{\begin{pmatrix} \infty \\ c \end{pmatrix}}_{\text{upper bound}} \right),$$
From this distribution, I wonder if the mean of $X$ is $\mu_x$. From my calculation, the marginal density of $X$ is $$f_X(x) = \frac{\Phi\left(\frac{c-\mu_y-\frac{\rho\sigma_y}{\sigma_x}(x-\mu_x)}{\sqrt{(1-\rho^2)}\sigma_y}\right)}{\Phi((c-\mu_y)/\sigma_y)}\frac{1}{\sigma_x}\phi((x-\mu_x)/\sigma_x), $$ where $\Phi(\cdot)$ is the cdf of standard normal and $\phi$ is the pdf of standard normal.
I am not sure that if $$\mu_x = \int xf_X(x)\,dx $$
Or maybe $$\mathbb{E}[X] = \mu_x - \rho\sigma_x\left(\frac{\phi((c-\mu_y)/\sigma_y)}{\Phi((c-\mu_y)/\sigma_y)}\right) $$