Robust standard errors (White standard errors) are given by: $$\hat{V}(b)=(\sum_{i=1}^N x_ix_i')^{-1}(\sum_{i=1}^N e_i^2x_ix_i')(\sum_{i=1}^N x_ix_i')^{-1}$$
This helps us to estimate a asymptotic covariance matrix under heteroscedasticity. Now assume a homoscedastic model, thus $e_i\sim N(0, \sigma^2)$ and $e_i$ is $iid$. Can the estimator from above be used under these homoscedastic assumptions? How can the equivalance between this estimator and the 'classic' estimator $\hat{V}(b)=\sigma^2(\sum_{i=1}^N x_ix_i')^{-1}$ be shown?