Consider $n$ independent uniform random variables $X_i \sim U(-\theta,\theta)$, and let $Y_1 = \min(X_1, \ldots, X_n)$ and $Y_n = \max(X_1, \ldots, X_n)$ .
What is distribution of $Z = \max (-Y_1,Y_n)$, given that the joint PDF of $Y_1$ and $Y_n$ is $$ f(y_1, y_n) = \frac{n(n-1)}{(2θ)^n} (y_n-y_1)^{n-2} , \quad -\theta < y_1 < y_n < \theta ? $$