Suppose $(X_1,\ldots,X_d)$ is a positive continuous random variable. Write its joint probability element as
$$f(x_1,\ldots,x_d)\,\mathrm{d}x_1 \cdots \mathrm{d}x_{d-1} \mathrm{d}x_d$$
so that the density function is $f(x_1,\ldots, x_d).$
Leaving the case of the $L^\infty$ norm for later (it is special), consider $0\le p\lt \infty.$ You ask about the density of the random variable
$$(Y_1,\ldots,Y_{d-1},R) = (X_1/R, \ldots, X_{d-1}/R, (X_1^p+\cdots+X_d^p)^{1/p}).$$
This is an invertible transformation because $X_i=R\,Y_i$ is defined for $i=1,2,\ldots,d-1$ and $X_d = R\left(1 - Y_1^p-\cdots-Y_{d-1}^p\right)^{1/p}$ also is unique.
Emulating the derivation of the Dirichlet distribution using the algebra of differential forms, compute
$$\mathrm{d}x_i = r\,\mathrm{d}y_i + y_i\,\mathrm{d}r,\ i=1,2,\ldots, d-1$$
and
$$\begin{aligned}
px_d^{p-1}\,\mathrm{d}x_d &= d\left(x_d^p\right) = \mathrm d\left(r^p-x_1^p-\cdots-x_{d-1}^p\right)\\
&= p\left(r^{p-1}\,\mathrm{d}r - x_1^{p-1}\,\mathrm{d}x_1 - \cdots - x_{d-1}^{p-1}\,\mathrm{d}x_{d-1}\right).
\end{aligned}$$
Plug these in to compute the old differential in terms of the new variables and their differentials:
$$\begin{aligned}
\mathrm{d}x_1\wedge \cdots \wedge \mathrm{d}x_d &= \left(px_d^{p-1}\right)^{-1}\mathrm{d}x_1\wedge \cdots \wedge \mathrm{d}x_{d-1}\wedge \mathrm{d}(x_d^p)\\
&= \left(x_d^{p-1}\right)^{-1}\mathrm{d}x_1\wedge \cdots \wedge \mathrm{d}x_{d-1}\wedge \left(r^{p-1}\,\mathrm{d}r - x_1^{p-1}\,\mathrm{d}x_1 - \cdots - x_{d-1}^{p-1}\,\mathrm{d}x_{d-1}\right)\\
&= \left(x_d^{p-1}\right)^{-1}\mathrm{d}x_1\wedge \cdots \wedge \mathrm{d}x_{d-1}\wedge r^{p-1}\,\mathrm{d}r \\
&= \left(x_d^{p-1}\right)^{-1} \left(r\,\mathrm{d}y_1 + y_1\,\mathrm{d}r\right) \wedge \cdots \wedge \left(r\,\mathrm{d}y_{d-1} + y_{d-1}\,\mathrm{d}r\right) \wedge r^{p-1}\,\mathrm{d}r\\
&= r^{d-1}\left(\frac{r^{p-1}}{x_d^{p-1}}\right)\,\mathrm{d}y_1\wedge \cdots \wedge \mathrm{d}y_{d-1} \wedge \mathrm{d}r\\
&= r^{d-1}\left(1 - y_1^p - \cdots - y_{d-1}^p\right)^{1/p-1}\,\mathrm{d}y_1\wedge \cdots \wedge \mathrm{d}y_{d-1} \wedge \mathrm{d}r.
\end{aligned} $$
The coefficient of the differential form is the Jacobian and (therefore) the density of $(Y_1,\ldots, Y_{d-1})$ is
$$\begin{aligned}
&g(y_1,\ldots, y_{d-1}) \\
&= \int_0^\infty f\left(ry_1, \ldots, ry_{d-1}, r\left(1-y_1^p-\cdots-y_{d-1}^p\right)^{1/p}\right)\, r^{d-1}\left(1 - y_1^p - \cdots - y_{d-1}^p\right)^{1/p-1}\,\mathrm{d}r.
\end{aligned}$$
The difficulty when $p=\infty,$ where $r=\max(x_i),$ is that $(y_1,\ldots, y_{d-1}) = (x_1/r,\ldots, x_{d-1}/r)$ are no longer coordinates for the image of the projection. These coordinates work only in the subset where $x_d$ is the largest.
A simple approach is to decompose the distribution according to the events determined by which of the $X_i$ is the largest. Because the joint distribution is continuous, the chance of a tie for largest is zero, so may neglect that possibility. Let $K$ be the random variable given by the index of the largest of the $X_i.$
Conditioning first on $K=d,$ we have $R=\max(X_i)=X_d$ and $Y_i = X_i/R = X_i/X_d$ for $i=1,2,\ldots, d-1.$ Computing as before we (easily) obtain
$$\mathrm{d}x_1\wedge \cdots \wedge \mathrm{d}x_{d} = r^{d-1}\, \mathrm{d}y_1\wedge \cdots \wedge \mathrm{d}y_{d-1}\wedge \mathrm{d}r.$$
Comparing this to the $L^p$ solution obtained previously, we may offer an intuitive (hand-waving) argument for this formula (as suggested in the question): as $p$ grows large, the factor $(1-y_1^p-\cdots -y_{d-1}^p)^{1/p-1}$ approaches $x_d^{-1} = r^{-1},$ giving $r^d(r^{-1})= r^{d-1}$ for the Jacobian.
This analysis applies with almost no change when conditioning on other values of $K:$ you only have to take the proper sign when integrating over $r$ in each case to assure the result is a positive density. In every case the Jacobian still equals $r^{d-1}.$ The full distribution of the projection is an equal mixture of the $d$ conditional distributions. Each of the $d$ components is supported on a different face of the unit cube $I_d = (0,1]^d\subset \mathbb{R}^d;$ the component corresponding to $K=k$ is supported on $\partial_k^{+} I_d = \{(y_1,\ldots,y_d)\mid 0\lt y_i\le 1;\ y_k=1\} \subset I_d.$