For $Y \sim$ Uniform$(-1,1)$ $ Y_{n}= \begin{cases} \text{Y if } > \vert Y \vert \leq 1-\frac{1}{n}\\ \text{n if } \vert Y \vert > >1-\frac{1}{n}\\ \end{cases} $
Prove
- (a) $ Y_{n}\xrightarrow{L}Y$
- (b) $ \lim_{n\to \infty}E[Y_n]>E[Y]$
How do I find the CDFs of $Y_n$?
I tried that:
(a) if $|Y| \leq 1-1/n$, then $Y_n = Y$, the CDF of $Y_n$ is $F_{Y_n} = \frac{y+1-1/n}{2} $ and the CDF of Y is $F_Y = \frac{y+1}{2}$
$\lim_{n\to\infty}F_{Y_n} = \frac{y+1}{2}$if $|Y| > 1-1/n$, then$Y_n = n$, the CDF of $F_{Y_n} = 1$ if $n > y$
the CDF of $F_Y = 1$ if y > 1(b) $E[n] = n$, $lim_{n\to\infty}E[n] = n = \infty$
$E[Y_n] = E[Y] = \theta = 0$