1

Looking at answer on the standard error of the variances and this answer on the standard error of the covariances, and knowing that both are part of the variance-covariance matrix, $\Sigma$, I am wondering if both formulas can be summarized in a single equation (probably in a matrix form).

The equation for the variance of the variance is

$\text{var}(s_{xx}^2) = \frac{1}{n}\left(\mu_4 -\frac{n-3}{n-1} \sigma^4\right) $

where $\mu_4 = E(x-\mu_x)^4$ and $\sigma_x^4 = ((x-\mu_x)^2)^2)$

and the standard error of the covariance is

$\text{var}(s_{XY})=\frac{(n−1)^2}{n^3}(μ_{22}-μ_{11}^2)+ \frac{(n−1)}{n^3} ( μ_{20} μ_{02}-μ_{11}^2 )$

where $\mu_{rs}=E[(X-\mu_{_X})^r\,(Y-\mu_{_Y})^s]$.

Thank you,


EDIT:

I have found a good approximation as $(n^{-1}X^{2\prime}X^2)-(X^{\prime}Xn^{-1})^2$, where $X$ is centered, $X=X-\bar{X}$, and $^2$ is element-wise. In R:

round((t(X^2)%*%(X^2)*N^-1-((t(X)%*%X)*N^-1)^2),3)
POC
  • 346
  • 1
  • 8
  • 23

1 Answers1

1

If you take this (I personally haven't checked it):

$\text{var}(s_{XY})=\frac{(n−1)^2}{n^3}(μ_{22}-μ_{11}^2)+ \frac{(n−1)}{n^3} ( μ_{20} μ_{02}-μ_{11}^2 )$

where $\mu_{rs}=E[(X-\mu_{_X})^r\,(Y-\mu_{_Y})^s]$.

Then $\text{var}(s_{XX})=\frac{(n−1)^2}{n^3}(μ_{22}-μ_{11}^{2})+\frac{(n−1)}{n^3} ( μ_{20} μ_{02}-μ_{11}^2 )$ should still hold, since it is already generalized.

\begin{cases} \mu_{11}=E[(X-\mu_{_X})\,(X-\mu_{_X})] = E[(X-\mu_{_X})^2]=s_{XX}=\sigma^2\\ \mu_{22}=E[(X-\mu_{_X})^2\,(X-\mu_{_X})^2]=\kappa s_{XX}=\mu_4\\ \mu_{20}=\mu_{02}=E[(X-\mu_{_X})^0\,(X-\mu_{_X})^2] = E[(X-\mu_{_X})^2] = s_{XX} = \sigma^2 \end{cases}

So

$$\text{var}(s_{XX})=\frac{(n−1)^2}{n^3}(\mu_4-(\sigma^2)^{2})+\color{red}{\frac{(n−1)}{n^3} ( (\sigma^2)(\sigma^2)-(\sigma^2)^2 )}\\ =\frac{(n−1)^2}{n^3}(\mu_4-\sigma^4) $$

Discrepancies are due to Bessel's correction (probably).


In their answer, glen_b says that

Note that correcting this for the $\frac{1}{n-1}$ version is a simple matter of multiplying the above result by $(\frac{n}{n-1})^2$.

This would lead to:

$$\text{var}(s_{XX})=\frac{n^2}{(n−1)^2}\frac{(n−1)^2}{n^3}(\mu_4-\sigma^4)\\ =\frac{1}{n}(\mu_4-\sigma^4) $$

So still not quite your first result.

Firebug
  • 15,262
  • 5
  • 60
  • 127