Does maximizing the Jensen–Shannon divergence $D_{\mathrm{JS}}(P \parallel Q)$ maximize the Kullback–Leibler divergence $D_{\mathrm{KL}}(P \parallel Q)$? If so, I'd like to be able to show that it does.
I have managed to express $D_{\mathrm{JS}}(P \parallel Q)$ in terms of $D_{\mathrm{KL}}(P \parallel Q)$ as follows:
$$D_{\mathrm{JS}}(P \parallel Q) = \frac{1}{2}D_{\mathrm{KL}}(P \parallel Q) + \frac{1}{2}D_{\mathrm{KL}}(Q \parallel P) - \frac{1}{2}\mathbb{E}_P\Big[ \log \Big(1 + \frac{P}{Q}\Big) \Big] - \frac{1}{2}\mathbb{E}_Q\Big[ \log \Big(1 + \frac{Q}{P}\Big) \Big] + \log2$$
Does the linear relationship between the two in the above expression show that maximizing $D_{\mathrm{JS}}(P \parallel Q)$ also maximizes $D_{\mathrm{KL}}(P \parallel Q)$?