Let $X_n = \mu_X + O_p(n^{-1})$ and let $Y_n = \mu_Y + O_p(n^{-1})$ where $\mu_X$ and $\mu_Y$ are constants. Then is it possible to write $Z_n = X_n/Y_n$ in a simplified form? E.g. I have $$ \begin{align} Z_n = \frac{X_n}{Y_n} &= \frac{\mu_X + O_p(n^{-1})}{\mu_Y + O_p(n^{-1})} \\ &= \frac{\mu_X}{\mu_Y + O_p(n^{-1})} + \frac{O_p(n^{-1})}{\mu_Y + O_p(n^{-1})}. \end{align} $$
Can we then drop the terms $O_p$ terms in the denominator and say $$ \begin{align} Z_n = \frac{\mu_X}{\mu_Y} + \frac{O_p(n^{-1})}{\mu_Y} = \frac{\mu_X}{\mu_Y} + O_p(n^{-1}). \end{align} $$
Edit: Further attempt after whuber suggestion. $$ \begin{align} \frac{\mu_X + O_p(n^{-1})}{\mu_y + O_p(n^{-1})} &= \bigg(\frac{\mu_X}{\mu_Y}\bigg) \frac{1 + O_p(n^{-1})/\mu_X}{1 + O_p(n^{-1})/\mu_Y} \\ &= \bigg(\frac{\mu_X}{\mu_Y}\bigg) \frac{1 + O_p(n^{-1})}{1 + O_p(n^{-1})} \\ &= \bigg(\frac{\mu_X}{\mu_Y}\bigg) (1 + O_p(n^{-1}))\frac{1}{1 + O_p(n^{-1})} \\ &= \bigg(\frac{\mu_X}{\mu_Y}\bigg) (1 + O_p(n^{-1}))(1 - O_p(n^{-1}) + O_p(n^{-2}) + O_p(n^{-3}) + \dots) \\ &= \bigg(\frac{\mu_X}{\mu_Y}\bigg) (1 + O_p(n^{-1}))(1 + O_p(n^{-1})) \\ &= \bigg(\frac{\mu_X}{\mu_Y}\bigg) (1 + 2O_p(n^{-1}) + O_p(n^{-2})) \\ &= \bigg(\frac{\mu_X}{\mu_Y}\bigg) (1 + O_p(n^{-1})) \\ &= \frac{\mu_X}{\mu_Y} + \frac{\mu_X}{\mu_Y} O_p(n^{-1}) \\ &= \frac{\mu_X}{\mu_Y} + O_p(n^{-1}). \end{align} $$ Does that seem ok? Is it valid to use a Taylor/Neumann series on the $O_p$ terms like this? Do I need conditions on the $O_p$ terms regarding the radius of convergence of the expansion?