\begin{equation} \boldsymbol{A} = \begin{bmatrix} {1}_n^\top \otimes \mathbb{I}_m \\ \mathbb{I}_n \otimes {1}_m^\top \end{bmatrix} \in \mathbb{R}^{(m+n)\times mn} \end{equation}
If the above matrix is partitioned as follows, are the dimensions shown below correct?
\begin{equation} \boldsymbol{A}' = \begin{bmatrix} {1}_n^\top \otimes \mathbb{I}_m \end{bmatrix} \in \mathbb{R}^{m\times mn} \end{equation}
\begin{equation} \boldsymbol{A}'' = \begin{bmatrix} \mathbb{I}_n \otimes {1}_m^\top \end{bmatrix} \in \mathbb{R}^{n\times mn} \end{equation}
If not, have I misinterpreted the steps to partitioning a block matrix? Can you then show how it can be corrected?