Assume $y$ is a Gaussian random variable with $\text{Var}(y)= \sigma_y^2=\sum_i a_i^2\sigma_i^2$, where $\sigma_i$ corresponds to $x_i$, all $x_i$ are independent. $\mu_y = \sum a_i\mu_i$. I want to derive a formula for $\text{Cov}(y,x_i)$. I have tried the following:
$\text{Cov}(y,x_i) = \mathbb{E}[x_iy] - \mathbb{E}[x_i]\mathbb{E}[y]$. The last term is trivial to get. $\mathbb{E}[x_iy] \approx \mathbb{E}_z[\int \exp[-.5 (((x - \mu_i)^2)/\sigma_i ^2 + ((z/x - \mu_y)^2)/\sigma_y^2 )]/|x| dx]$, which is untractable I am afraind. So, I am wondering if there is a way to tackle this problem?