Let $X_1, \ldots, X_n$ be a random sample of size $n$ from the following distribution: $$f(x;\theta) = \left\{\begin{array}{ccc} \frac{1 - \theta}{6} & , & x = 1 \\ \frac{1 + \theta}{6} & , & x = 2 \\ \frac{2 - \theta}{6} & , & x = 3 \\ \frac{2 + \theta}{6} & , & x = 4\end{array}\right.$$
where $-1 < \theta < 1$. Find a minimal sufficient statistic for the parameter $\theta$.
Answer: I am attempting to use the Neyman Theorem: $$f(x_1;\theta)\cdots f(x_n;\theta) = k_1\Big[u_1(x_1,\ldots, x_n); \theta\Big]k_1(x_1,\ldots, x_n)$$
So, \begin{eqnarray*} f(x_1;\theta)\cdots f(x_n;\theta) & = & \prod\limits_{i = 1}^n \left(\frac{1 - \theta}{6}\right)^{n_1}\left(\frac{1 + \theta}{6}\right)^{n_2}\left(\frac{2 + \theta}{6}\right)^{n_3}\left(\frac{2 - \theta}{6}\right)^{n_4} \end{eqnarray*}
where $n = n_1 + n_2 + n_3 + n_4$.
However, I do not seem to be able to form $k_1$ and $k_2$ from this, neither am I able to obtain the sufficient statistic $u_1$. Do the $x$-values 1, 2, 3, 4 even play a role here?