Let $\mathbf{a}, \mathbf{b} \in \mathbb{R}^N$ be two orthogonal vectors, and $\mathbf{x} \in \mathbb{R}^N$ a random vector variable with some probability density function.
Prove or disprove that, as a consequence of the orthogonality of $\mathbf{a},\mathbf{b}$:
$$\mathrm{MI}(\mathbf{a}\cdot\mathbf{x}, \mathbf{b}\cdot\mathbf{x}) = 0$$
where MI stands for mutual information.