Dears,
I'm trying to compute the Z-transform of $$ x(n) = 2^{-|n|} $$. My procedure is as follows:
Using definition of Z transform:
$$ X(z) = \sum_{n=-\infty}^{\infty}2^{-|n|} z^{-n} = \sum_{n=-\infty}^{0}2^{-|n|} z^{-n} + \sum_{n=1}^{\infty}2^{-|n|} z^{-n} $$
$$ X(z) = \sum_{n=-\infty}^{0}2^{-n} z^{-n} + \sum_{n=1}^{\infty}2^{-n} z^{-n} $$
$$ X(z) = \sum_{n=0}^{\infty}2^{n} z^{n} + \sum_{n=0}^{\infty}2^{-n} z^{-n} - 1 $$
$$ X(z) = \sum_{n=0}^{\infty}(2z)^{n} + \sum_{n=0}^{\infty}(2z)^{-n} - 1 = \sum_{n=0}^{\infty}(2z)^{n} + \sum_{n=0}^{\infty}(\frac{1}{2z})^{n} - 1 $$
Using Geometric Series Formula:
$$ X(z) = \frac{1}{1-2z} + \frac{1}{1-\frac{1}{2z}} - 1 $$
But according to the geometric series formula, there is a region of convergence (ROC):
For the left fraction i get ROC: $$|2z|<1$$ and for right fraction i get ROC: $$|\frac{1}{2z}|<1$$
Solving the inequalities:
Left fraction ROC:
$$ (- \frac{1}{2} , \frac{1}{2} )$$
Right fraction ROC:
$$ (\frac{1}{2},\infty) , (-\infty, -\frac{1}{2}) $$
Therefore, there is no intersection ROC for both fractions.
My question is: It means the Z-transform does not exist?
Thanks!!