Let's say that we have this simple model:
\begin{equation} \label{eq:gls_reg} y_{ij} = x_{ij}\cdot\beta +{u_{i}} + \varepsilon_{ij} , \end{equation} \begin{equation*} u_i\sim N\left( {0,\sigma_{u} ^2 } \right) , \end{equation*} \begin{equation*} \varepsilon_{ij} \sim {\rm N}\left( {0,{\sigma_{\varepsilon} ^2}} \right) , \end{equation*} thus $u_i$'s are idd and $\varepsilon_{ij}$'s are iid.
Are $u_i$'s independent of $\varepsilon_{ij}$'s?