I fit a logistic regression model with 14 predictors, here's the code and output:
veg.fit <- glm(veg~., family = binomial, data=df.c)
summary(veg.fit)
Call:
glm(formula = veg ~ ., family = binomial, data = df.c)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.26825 -0.50300 -0.22594 -0.08373 2.85784
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.8685548 9.0614215 1.310 0.1903
gender -0.4982546 1.1332216 -0.440 0.6602
age 0.0122210 0.0653607 0.187 0.8517
hsgpa -1.6201620 1.4236274 -1.138 0.2551
cogpa -1.6635211 1.7608781 -0.945 0.3448
dhome -0.0003964 0.0004423 -0.896 0.3700
dres 0.1457214 0.1326084 1.099 0.2718
tv 0.0158743 0.0845977 0.188 0.8512
sport -0.2994841 0.2173609 -1.378 0.1683
news 0.1128158 0.1988480 0.567 0.5705
aids 0.0811258 0.1685509 0.481 0.6303
affil -0.4934158 0.6130881 -0.805 0.4209
ideol -1.0391178 0.5932011 -1.752 0.0798 .
relig 0.9825565 0.7048663 1.394 0.1633
abor 0.1605618 1.8966853 0.085 0.9325
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 50.725 on 59 degrees of freedom
Residual deviance: 36.613 on 45 degrees of freedom
AIC: 66.613
Number of Fisher Scoring iterations: 7
Then I did the likelihood ratio test for null hypothesis: $\beta_{1}=...=\beta_{14}=0$
1-pchisq(50.725-36.613,59-54)
0.01491341
which shows significant, but when I check the coefficient of each predictor, none of them show significant(all their p-value is large). I wonder how could this happen?