3

I was reading from The Elements of Statistical Learning (Section 3.2) and they were able to find $Var(\hat\beta)$

Given

$$\hat\beta = (X^TX)^{-1}X^Ty \qquad (3.6) $$

The answer they had was $Var(\hat\beta) = (X^TX)^{-1}\sigma^2$

Please how do I find $Var(\hat\beta)$ from $ (3.6)$

gunes
  • 49,700
  • 3
  • 39
  • 75
EA Lehn
  • 199
  • 8

1 Answers1

5

Via substitution and some matrix algebra: $$\begin{align}\operatorname{var}(\hat\beta)&=\mathbb E[\hat\beta\hat\beta^T]-\mathbb E[\hat\beta]\mathbb E[\hat \beta^T]\\&=\mathbb E[(X^TX)^{-1}X^Tyy^TX(X^TX)^{-1}]-\mathbb \beta\beta^T\\&=(X^TX)^{-1}X^T\mathbb E[yy^T]X(X^TX)^{-1}-\beta\beta^T\\&=(X^TX)^{-1}X^T(\sigma^2I+X\beta\beta^TX^T)X(X^TX)^{-1}-\beta\beta^T\\&=\sigma^2(X^TX)^{-1}\end{align}$$

Note that since $y=X\beta+\epsilon$, and $\mathbb E[\epsilon\epsilon^T]=\sigma^2I$ and $\mathbb E[\epsilon]=0$: $$\mathbb E[yy^T]=X\beta \beta^TX+\mathbb E[\epsilon\epsilon^T]=X\beta \beta^TX+\sigma^2I$$

gunes
  • 49,700
  • 3
  • 39
  • 75