Suppose I have some continuous data that looks like this (this is a mini example, not my real data):
X = [1.61247174986927 2.65691016769718 0.591138214153149
0.726195765274149 2.88156040072165 1.62455101313526
6.43225443007122 0.590263950142884 3.05416345831489
2.82441594177780 1.27093403949212 0.414863903556840
1.34369968006468 0.367816560010304 1.19023283647451
4.39095587146157 2.42508655542887 0.295173291557651
0.842110993459900 4.94140793763529],
Suppose I need to run regression $Y_i=a+bX_i+cZ_i+e_i$. Suppose I need to discretize $X_i$ into only 4 values, how shall I do the discretization to minimize the impact on estimated $\widehat{b}$ (for example, if $\widehat{b}$ is significant under the original $X_i$, the new coefficient in front of discretized $X_i$ would better be significant), or vaguely, minimize information loss.