I encountered the maximum likelihood method. It says that the common probability density function of sample $X_1,\ldots,X_n$ having distribution $f(x;\theta )$ with observed values $x_1,\ldots,x_n$ is $f(x_1,\ldots,x_n;\theta )=\prod_i f(x_i;\theta)$.
Now what does the semicolon means in the definition of $f$? And is the mapping from $\mathbb{R}^n$ to $\mathbb R$ or from $\mathbb{R}^{n+1}$ to $\mathbb R$? Finally, how is it possible that the domain of $f$ changes from $\mathbb{R}^n$ or $\mathbb{R}^{n+1}$ to $\mathbb{R}$ or $\mathbb{R}^2$?