Consider two parameters $\alpha$ and $\beta$ and let $C_{\alpha,\beta}$ denote the joint $95\%$ confidence region of $(\alpha,\beta)$.
Take the parameter $\delta\equiv f(\alpha,\beta)$ where $f$ is a linear function of $(\alpha,\beta)$. For example, $\delta=\alpha+\beta$.
Let $C_{\delta}$ denote the joint $95\%$ confidence region of $\delta$.
Consider the interval $$T\equiv \{c\in \mathbb{R}: \exists (a,b) \in C_{\alpha,\beta} \text{ s.t. } c=f(a,b)\}$$
Question: is $T \supseteq C_{\delta}$?