I have a dataset like the one in this question, i.e,
interval mean Drug lower upper
14 0.004 a 0.002 0.205
30 0.022 a 0.001 0.101
60 0.13 a 0.061 0.23
90 0.22 a 0.14 0.34
180 0.25 a 0.17 0.35
365 0.31 a 0.23 0.41
14 0.84 b 0.59 1.19
30 0.85 b 0.66 1.084
60 0.94 b 0.75 1.17
90 0.83 b 0.68 1.01
180 1.28 b 1.09 1.51
365 1.58 b 1.38 1.82
14 1.90 c 0.9 4.27
30 2.91 c 1.47 6.29
60 2.57 c 1.52 4.55
90 2.05 c 1.31 3.27
180 2.422 c 1.596 3.769
365 2.83 c 1.93 4.26
14 0.29 d 0.04 1.18
30 0.09 d 0.01 0.29
60 0.39 d 0.17 0.82
90 0.39 d 0.20 0.7
180 0.37 d 0.22 0.59
365 0.34 d 0.21 0.53
You can see a good graphical representation in the top answer on the linked thread. Let's assume the upper
= means + 1 standard-deviation and lower
= means - 1 standard-deviation. Means and standard-deviations were computed over a set number of trials (say, $n=20$) at each interval for each Drug.
My question is, how do I get p-values for the overall superiority of say drug C to drug A or drug B to drug D? What is the correct statistical procedure here and how can it be implemented?